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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.



Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. James C. Bezdek of the Institute for

Interdisciplinary Study of Human and Machine Cognition at the University of West

Florida. Dr. Terry Feagin served as RICIS research coordinator.

Funding has been provided by Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between
NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was James A. Villarreal, of the Software

Technology Branch, Information Technology Division, Information Systems

Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.





CLASSIFICATION OF POSTURE MAINTENANCE DATA

WITH FUZZY CLUSTERING ALGORITHMS

INTERIM PROGRESS REPORT

Submitted to • NASA Johnson Space Center
c/o Dr. James Villereal, Director
Neural Networks Program
Software Technology Branch, JT4
Houston, Texas 77058

Submitted by • The University of West Florida
Institute for Interdisciplinary Study of Human and Machine Cognition
Division of Computer Science
11000 University Parkway
Pensacola, FL 32514

Date Submitted" August 15, 1991

Principal
Investigator" Date •

C_B-ez ssor " Division of Computer Science
University of West Florida, Pensacola, FLA 32514 •Tel. (904) 474-2784

Faculty
Collaborator: Date "

Dr. Patrick O. Bobble • Assoc. Professor • Division of Computer Science
University of West Florida, Pensacola, FLA 32514 • Tel. (904) 474-2784



I Table of Contents ]

1. Executive Summary ..................................................................................................... p. 3

2. Project Oescrlptlon ....................................................................................................... p. 4

3. Initial Results and Discussion ....................................................................................... p. 10

4. References ................................................................................................................. p. 12

NASA:POSTURE CONTROL REPORT: BEZDEK : 8/12_/91: p. 2



I Executive Summary l

Sensory inputs from the visual, vestibular and propdoreceptive systems are integrated by the central

nervous system to maintain postural equilibrium. Sustained exposure to microgravity causes

neurosensory adaptation during spaceflight, which results in decreased postural stability until

readaptation occurs upon return to the terrestrial environment. Data which simulate sensory Inputs under

various conditions have been collected in conjunction with Johnson Space Center postural control

studies using a tilt-translation device. The University of West Florida proposed applying the fuzzy c-means

clustering algorithms to this data with a view towards identifying various states and stages.

Data supplied by NASNJSC via Tom Collins, Krug Ufe Sciences, were submitted to the Fuzzy c-Means

(FCM) algorithms in an attempt to identify and characterize cluster substructure in a mixed ensemble of

pre and post adaptational TTD data. Following several unsuccessful trials with FCM using a full 11

dimensional data set, we discovered a set of two channels (features) enables FCM to separate pre from

post. Our main conclusions are that FCM seems able to separate pre from post I-I-D subject #2 on the one

trial we have used so far, but only in certain subintervals of time; and that Channels 2 (right rear transducer

force) and 8 (hip sway bar) contain better discrimination information than other supersets and

combinations of the data we have tried so far.
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I 2. Project Description J

Subsequently, we have been studying separability of pre and post across the time axis, by subdividing

the data into "time slices" or subintervals of the 20"second data collection epoch. So far, our tests have

involved only one subject and one TED test. For this data, several measures of separability, as well as the

error rate computed by resubstitution of the training data, suggest the FCM can separate certain time

slices much more readily than others. We will continue to widen our computational experience, by

enlarging the tests we have conducted across different trials on the same subject, and then different

subjects.

Fuzzy c-Means

Let (c) be an integer, 1< c<n and let X = {x I , x2 ..... Xn} denote a set of (n) feature vectors in R p. X is

numericalobjectdata; the j-th object in this study is a set of p measurements of sensor signals at time t. To

be technically accurate, the notation for the posture control data should be something like xj = x(tj), j = 1,2,

.... n; however, in the interests of clarity we will suppress the dependency of the feature vectors on time.

Xjk Is, for this data, the j-th channel value associated with time k. Given X, we say that (c) fuzzy subsets

{ui:X,,_ [0,1]} are a fuzzy c-partition of X in case the (cn) values {Uik = ui(xk), l<k__n, l_<i_<c}satisfy three

conditions:

0 _<Uik <-1 for all i,k ; (la)

T.Uik= 1for all k; and (1b)

0 < g Uik< n for all i. (lc)

Each set of (cn) values satisfying conditions (1) can be arrayed as a (cxn) matrix U = [Uik]. The set of all such

matrices are the non-degenerate fuzzy c-partitions of X:

Mfc n = {U inR cn I Uiksatisfies conditions (1) for aUi and k}. (2)

And in case all the Uik'S are either 0 or 1, we have the subset of hard (or crisp) c-partitions of X:

Mcn = {U in Mfcn I Uik= 0 or I for all i and k}. (3)
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Data structures identified by partitions which are optimal in the sense of minimizing the function defining

them often provide good insights and explanations into substructure of the process that produced the

data. The FCM functional is as follows:

Jm(U,v;X) = T_J_ikm(llXk-VillA)2 ,
where (5)

m E [1, oo)is a weighting exponent on each fuzzy membership;

U E Mfcn is a fuzzy c-partitionof X;

v = (v 1, v2 ..... Vc) are cluster centers in R s ;

A = is any positive definite (s x s) matrix; and

IlXk-ViliA= (Xk-vi)TA(Xk-Vi)isthe £)(3 distance (in the A norm) from xk to vi .

Conditions necessary for a local minimum of Jm are as follows:

Fuzzy C-Means (FCM'J Theorem [41. (U,v) may minimize T..T.uikm(llXk - viii A)2 for m>l only if •

Uik= ( IlXk-villA /llXk-VjllA)-2/(m-l) foralli,k ; and

vi = _(Uik)mXk/T_.(Uik)m for all i

The FCM algorithms are simple Picard iteration through (8) "

Fuzzy/Hard c-Means (FCM/HCM) Al_clorithms [21.

(6a)
(6b)

(6<:)

(6d)

(6e)

(7a)

(7b)

<FCM/HCM 1> • Given unlabeled data set X = {x1, x2 ..... Xn}. Fix • 1 _<c < n; 1 < m < oo(/m=l for HCM);

positive definite weight matrix A to induce an inner product norm on R s ; and ¢, a small positive constant.

(or, initialize Uo E Mfcn).<FCM/HCM 2>: Guess v0 = ( v 1,0 ' v2,0 ..... Vc,0 ) _ RCS

<FCM/HCM 3>: For j = 1 to J:

<3a>" Calculate Uj with {vi,j_1 } and (8a) ;

<3b>: Update vi,j_1 tovi,jwith Uj and (8b), 1_<i_<c

<3c>: If max{ Ilvi,j_1 - vi,j II }<-c, thenstop and put (U*,v*) = (Uj,vj); Else" Nextj
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Configuration of the Posture Control Data

The following conceptual arrangement of the data will be referred to in subsequent discussion. We regard

the data as an array of size (p x 4000), where p=number of features (channels) used in the processing.

Each column of the matrix is thus a vector in R,P; and each row of the matrix contains the observations

collected by one sensor at each point in time. Further, the data are labeled as pre and post, so the overall

data matdx Is partitioned at column 2000 (the final observation time). EMG data were sampled at four times

the frequency of transducer data, so we decimated the EMG data in order to align them with the

transducer samples.

The basic data set then consists of 2000 samples taken across a 20 second time interval with sensors

attached to a subject at 11 locations (channels). Data were collected both before (pre) and after (post) a

subject was exposed to roughly 30 minutes in the TTD with one of six trial environments ('rrials 1-6). When

using FCM, rows of the data matrix X in Figure 1 correspond to features. For p=l 1, all of the data channels

are used. Choosing, e.g., features 2,5, and 8 corresponds to reading and processing only those three

rows of X. The vector Xpre, 1 which is highlighted in Figure 1 is a column vector with p entries • Xpre, 1 =

,p)T. It will be convenient in our discussion to subscript data sets as follows:(Xpre,1 Xpre,1 Xpre,1p1 j ,2

Xij = data matrixfor subjecti, trial j 1<_i _<5 and 1 _<j <_6. (8)

Conceptually, the data matrix has the following configuration:

Figure 1. Arrangement of the Posture Control Data for one subject for one trial

X

Ch 1

Ch 2

Ch p

Xpre, 1 ... X pre,2000 X post,1 "'" X post,2000
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The 11 features in X are labeled as shown in Table I (Feature # F = NASA Channel # C):

Table 1. Posture Control Features

F=C

1 = 1
2 = 2
3 = 3
4 = 4
5 = 5
6 = 7
7 = 8

8 =11
9 =12

10 = 13
11 = 14

Location

left front transducer force
right front transducer force
shear force transducer
left rear force transducer
right front force transducer
shoulder sway bar
hip sway bar

soleus
hamstrings
tibialis
quadriceps

Feature Selection

After several runs using all 11 channels, each of which produced uninterpretable results, we performed

several statistical analyses (principle components and MANOVA) in an attempt to find transformations of

the data that would give better results in 11 space. These attempts were also short lived, and seemed to

produce nothing useful. Finally, we resorted to a graphical plot of the raw signals in all 11 channels, and

used visual inspection to select the signal channels that seemed most likely to possess good

discriminatory power. The features (channels) selected for further analysis were as follows:

Feature Set
Channel 2 = right rear force transducer
Channel 5 = right front force transducer
Channel 8 = hip sway bar

None of the EMG data seemed, upon visual inspection at least, to contain information that could be used

to elicit classification, so we abandoned processing on these channels early in the study. At the

suggestion of Tom Collins, we also tried the following sets of three features:

Feature Set 2
Channels (1+2+4+5)/4 = ave. left, right,front,rear force transducers
Channel 3 = shear force transducer
Channel 8 = hip sway bar

Feature Set 3
Channels (1+2+4+5)/4= ave. left, right,front,rear force transducers
Channel 3 = shear force transducer
Channel 7 = shoulder sway bar
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However, neither of these feature sets seemed to produce better results than the channel 3-tuple {2,5,8}.

We will continue to experiment with Feature sets 1,2 and 3 as our computational base widens to include

further trials and subjects.

Initialization of FCM for the Posture Control Data

Since X is labeled (pre or post), we can Initialize FCM in step FCM 2 with UL, the hard partition that labels

the data. Moreover, the number of classes Is known, c=2. Thus, partition UL is the 2 x 4000 matrix :

..................."1
000 ................... O0

0 0 0 ................... 0 0 I_, pre

1 1 1 ................... 1 1 I_ post

(9)

This initialization cannot be used, of course, with unlabeled data, so initialization procedures for FCM will

have to be widened as the study progresses. For calculations on time subintervals, a label matrix in the

form of (10), adjusted to the correct subsize, is used to initialize FCM, and is the basis for computation of

the resubstitution error rate described next.

Measures of Performance and Separability

We use three performance indices to guide our analysis of the data. The primary measure of performance

is the observed label error rate EL(U, Xij) for U in Mcn. This is computed by first converting any terminal

fuzzy c-means partition, say UFC M, into a hard partition by thresholding with the so-called method of a-

cuts. Specifically, for a chosen membership threshold a e [0,1], we define the hard c-partition U(x derived

from UFC M as follows:

For cols j forwhich there is a row i in UFCM such that UFCM,ij >-(z, u(x,ij = 1, u(z,ij = 0, k ;_i; and otherwise,

For cols j for which there is no row i in UFCM such that UFCM,ij _>c{,declare "no label for j" .

Because "no label for j" columns of U(x do not contain a "1" in any row, U(x is not, strictly speaking a hard

partition of the data. This can be accounted for in a formal way by adding a c+l-st row to Ua and U L, with

zeroes in every column of U L, and (placed) l's in each column of U(z where "no label" occurs. After the

hard "partition" U(z has been determined, we compute the label error rate as follows:

EL(UFcM, Xij ) = T__ UL,ij - u(x' ij I/2nL
(10)
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where nL is the number of labeled data used for the run. EL is simply the number of times that the labels

in Ua disagree with the given labels divided by the total number of trials (samples) used to generate

UFC M-

We are also using two measures of separability of the data that are related to EL, and are thus most

accurately regarded as"second order"measures of classifier performance. The reason we are studying

these measures is to find a means for detecting, in _data, when the data are being well

separated, since the error rate EL cannot be computed with unlabeled data in on-line processing during

dat acquisition. These measures are as follows:

Cluster Center Separation (c=2, Euclidean Norm, )

DV(VFc M) = II VFCM, we - VFCM, post II (11)

It is intuitively plausible, but not mathematically necessary, that DV increase as the clusters that have

VFCM, pre and VFCM, post as their prototypes become increasingly well separated. This is illustrated

schematically in Figure 2:

Figure 2. Geometric Rationale for the measure of Cluster Center Separation

Good Separation : High DV

• •
• • •_ DV • • • _O •

'_, • • oil DV •

nun I mm

Poor Separation : Low DV
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Partition Entropy

H(UFc M) =. :_.,Uiklne(Uik)/nL (12)

This index is simply one measure of "fuzziness" of any partition in Mfcn. The value of H is 0 on every hard

U in Mcn, and increases to a maximum of Ine(C) = 0.69 ... for c=2 as U approaches the "fuzziest" partition,

namely, uij - (1/c) for all i and j. Thus, the better separated the clusters, the harder is UFC M, and the closer

H(UFCM) is to zero. H is often (but notalways!) a good indication of (algorithmic) separabirdyof X, so we will

track its ability to indicate when FCM is doing well.

Initial Results and Discusslon

Several runs using Feature set #1 = Channels {2,5, 8} and various 2 dimensional subsets thereof were

made on all 4000 data vectors. These runs were notable only in their lack of success. Following this, we

began subdividing X into time slices, and processing subinterval data sets. That is, we took a vertical

subslice through the matrix X in Rgure 1, adjusted Uo and nL, and submitted the data to FCM. This has

been done over a number of different feature subsets and time slices. The most striking results are

illustrated in Table 2 and Figure 3, which is a plot of the data in Table 2.

Table 2. Performance Indices for data X22 on time slices of 2 seconds each

T(secs)

2
4
6
8

10
12
14
16
18
20

DVInit DVfinal 100*Entropy % Error

DV(VFCM,init) DV(VFCM,linal) IO0"H(UFc M) IO0"EL(UFc M, Xij)

12 159.36 12 50
24 42.83 36 47.5
130 137.88 13 6
70 115.51 14 22.25
232 232.63 3 0
23 84.32 40 61.5
221 221.21 5 0
158 185.64 15 14.25
89 91.21 17 1.75
20 71.9 40 55
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Figure 3. Performance Indices for data X22 on time slices of 2 seconds (cf. Table 2)

25o.

225

20(_

125

100

75

5O

25

q

O-

100H = 100°Rnal Entropy of Ufuzzy

% Error computed with Uhard

DVinit = Ilvpre-vpostil at Initialization

DVflnal = Ilvpre-vposql at termination

-- DVinit

-- DVfinal

-- 100H
.......% Error

-2 0 2 4 6 8 10 12 i4 16 18 2"0 22 Time (secs)

Note that the distance DV between cluster centers was computed twice; at initialization, using (7b) with

UL; and again at termination, using (7"o) with UFC M. Figure 3 shows that DV increases and H decreases

whenever E L , the labeling error rate, is close to zero. The tentative inference to be drawn from this graph

is that FCM is able to differentiate between pre and post signals at some subintervals of the data collection

epoch. These results suggest that either DV or H or both may be indicators of the error rate across such

time steps (remember, there is no way to know what the error rate is with truly unlabeled data). However,

one must view this conjecture with great caution; it would be foolish to impute much credence to this

hypothesis on the basis of outputs from one subject on one trial. Our goal for the remainder of the project

will be to wider our computational experience across both trials on the same subject, as well as across

different subjects. Perhaps this initial conjecture will not stand up across different data sets; on the other

hand, we feel that these initial results are at least encouraging.

NASA : POSTURE CONTROL REPORT: 8EZDEK " 8/12/91 " p. 11



4. References I

[1] Kohonen, T. Self-Ora_anization and Associative Memory. 3rd Edition, Springer-Verlag, Berlin, 1989.

[2] Bezdek, J. Pattern Recoanition with Fuzzy Objective Function Alaorithms. Plenum, New York, 1981.

[3] Duda, R. and Hart, P. _rn Classification and Scene Analysis. Wiley, New York, 1973.

[4] Tou, J. and Gonzalez, R. Pattern Recoanition PrinciDles. Addison-Wesley, Reading, 1974.

[5] Hartigan, J. Clustedn_aAI0orithms. Wiley, New York, 1975.

[6] Pao, Y.H. Adaotive Pattern Recoanition and Neural Networks. Addison-Wesley, Reading, 1989.

[7] Uppman, R. An Introduction to Neural Computing, IEEE ASSP Magazine, April, 1987, 4-22.

[8] Paiosky, W., Harm, D., Reschke, M., Doxey, D., Skinner, N., Michaud, L. and Parker, D. Postural Changes
following Sensory Reinterpretation as an Analog to Spaceflight, private communication, 1990.

[9] Reschke, M. Neural Network Modeling of Postural Control, NASA/JSC technical report, 1990.

[10] Bezdek, J. A Note on Generalized Serf-organizing dustering Algorithms, in proc. SPIE AoDlications of A! (8). ed.
M. Trivedi, V1293, 1990, 260-267.

[11] Huntsberger, T. and Ajjimarangsee, P. Parallel Self-Organizing Feature Maps for Unsupervised Pattern
Recognition, in press, lnt'l. Jo. General Systems, 1989.

[12] Dubes, R. How Many Clusters are Best? An Experiment, Patt. Recog., 20, 1987, 645-663.

[13] Ball, G. and Hall, D. A Clustering Technique for Summarizing Multivariate Data, Behav. Sci., 12, 1967, 153-155.

[14] Dunn, J.C. A Fuzzy Relative of the ISODATA Process and its use in Detecting Compact, Well-Separated
Clusters, Jo. Cybernetics, 3, 1974, 32-57.

NASA : POSTURE CONTROL REPORT: BEZDEK ; 8/12/91 " p. 12


